塑料回收

化学回收溶液

资源效率,气候变化,废物管理,尤其是塑料废物 - 只有一些有关的问题,使全球商业化复杂超越预期。清楚的是必须改变一些事情。预见的材料增长需求将导致原材料稀缺,这要求我们考虑先进的方法,也可以回收和重用现有材料,而不是从新的原始材料创造所有内容。还有许多国家和区域规定有关回收目标。另一方面,消费者也在指导企业朝着再生材料的使用。解决这些挑战需要在价值链中的新创新和策略。

但是如何处理现有的塑料材料,从原料到精炼和最终使用,侧面和废物流的利用。需要识别精确的问题和实际解决方案。

The plastics recycling route is complicated and not without challenges. Different plastics grades usually do not mix, and even a small amount of the wrong grade may pollute the whole stream of another. Plastics require appropriate collection and sorting. Multicomponent plastics recycling through mechanical or chemical means is either not yet possible, extremely energy intensive or too costly. Thus, new technologies and regulations need to be developed to improve recycling rates.

化学回收是作为主要候选人的新兴。化学回收是一系列技术,可以实现高效循环经济的重大转变。化学回收的主要重点是塑料,但化学回收也可能在其他材料流中找到其用途。

'THE PLASTICS RECYCLING ROUTE IS COMPLICATED AND NOT WITHOUT CHALLENGES'

Today we are aware of some recycled plastics products. The quality of recycled materials is expected to improve as technologies are developing all the time. Mechanical recycling requires intense sorting according to plastic type, followed by washing and regranulation. Sorting is typically done by near infrared, middle range infrared or magnetic flotation techniques. In practice, all plastics can be recycled mechanically, yet plastics like polyethylene, polypropylene and PET are the most convenient. In the recycling of industrial clean grades, the final recycled plastic is very close to the original due to minimal contamination. In post-consumer resins (PCR) the collected plastics contain remainders of food, soil and chemicals and so the quality is not uniform, leaving the end product grey and often with an odour.

The limitations of mechanical recycling have led to the development of chemical recycling techniques, many of which already exist today. For example, for PET recycling techniques include the disintegration of the polymer back to monomer or oligomers that can be polymerized again into plastics. Other techniques include hydro-pyrolysis, pyrolysis followed by catalytic hydrotreatment, thermal (catalytic) cracking, gasification, Fischer-Tropsch, selective solvent extraction, and so on. Some of these technologies are also suitable for turning mixed waste, biowaste and waste from agriculture and forestry into hydrocarbons which can be used as feedstock for plastic production.

我们估计大规模的50%的塑料可以机械回收,50%需要化学回收。机械回收也导致聚合物的逐渐降解,因为链条切割较短。然而,返回碳氢化合物和单体的化学回收能够回收原始塑料的所有性质。

到地球:从收集到回收

为了实施战略选择,必须回答一系列常见的依赖性问题。短暂看收集,分类和分离和回收说明了这一点。

  1. 采集

塑料如何收集?所有塑料都很有价值,无论他们在使用多久,无论他们代表什么类型和质量。塑料的收集需要很好地组织,计划和实施,以实现完整的集合。在自然界,海洋,海洋和土地上发现的塑料是垃圾需求的完全不同的系统。包装,汽车和建筑塑料。同样,不同地区的地理,文化和习惯,也在欧洲,需要不同的措施。是否需要支持该系列所需的存款方案?

  1. 分类和分离,预治疗和后处理

The separation of plastics and the different plastic types can be done at source, or not at all. Pre-treatment processes vary depending on the process chosen. The quality and the range of different polymer types and the recycling processes used determine the need for other additional measures.

  1. MECHANICAL RECYCLING

虽然所有塑料类型都可以机械回收,但它仅适用于某个点。机械回收通常被认为是低资本密集投资,然而,由于对塑料类型预先筛选的密集需求,规模受到限制。即便如此,许多产品通常剩下的杂质。

  1. 化学回收

There are already several suitable chemical recycling technologies depending on the purity, quality and bio-based content. Pyrolysis, hydropyrolysis, thermal cracking, gasification, solvent extraction, hydrothermal liquefaction and other techniques can convert polymers back into hydrocarbons, oligomers and monomers suitable for conversion back into plastics.

使用部分原料作为能源,一些方法可以是高能量的,并且仍然为地区供暖提供过多的热量。最重要的因素是化学再循环塑料具有与原始塑料相同的质量和性质。

扰乱地平线

化学回收是一种破坏者,因为它能够在不影响质量和性能的情况下回收均匀的混合和肮脏的塑料。它可以通过解聚或物理溶剂萃取,或甚至在再循环期间使得甚至改变聚合物类型的速度。从聚苯乙烯到聚乙烯。

该方法在很大程度上是已知的化学和石化过程,但对于此目的而言,还需要密集的缩放。这里的扩展意味着既有较大的单位,也是大量分散的小型单位,具体取决于该区域,物流选项和可用的废塑料量。业务模式或单位的“映射”的变化是另一个潜在的干扰。

OUR SOLUTION

Afry可以为整个可持续发展的业务流程提供服务,从概念研究和战略中,一直到商业生产和新的回收站,或改变现有的。

塑料回收

Tomi Nyman.